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Abstract 

Technology impact evaluations in air transport require the specification of environment 
conditions, such as the traffic structure. Since a multitude of worldwide traffic 
situations exists, this paper presents a systematic approach based on cluster analysis 
that can handle the worldwide diversity, while ensuring to determine most relevant 
traffic situations. This is crucial for the universality and global relevance of evaluation 
results. The approach is presented for the application example of runway capacity 
evaluation, as part of which features of daily movement distributions of airports and 
the traffic mix as well as peak situations are quantified. The resulting representative 
airport  and  peak  categories  comprise  a  limited  set  of  typical  traffic  situations  
worldwide that can serve as standard input for capacity-related evaluation, ensuring 
comparability and clarity. 
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1. INTRODUCTION 

Evaluation of the impact of new technologies in air transportation is important to 

ensure an efficient transport system in the future. Moreover, it is crucial to determine 

this  impact  on  a  global  level  to  cover  a  range  of  potential  environment  conditions  

faced and to evaluate whether a certain technology or concept proves its potential. 

The specification of environment conditions for these evaluations has a considerable 

influence on the results and needs to be pursued thoroughly and systematically. A 

major problem to be faced is the worldwide diversity in traffic conditions that has to 

be handled. It is not possible to cover each and every specific environment condition 

in impact analyses since this is computationally demanding. However, a reduction of 

environments to a few specific local ones is also not beneficial as it focuses on local 

peculiarities that do not reflect the global range of environments. Therefore, this 

paper provides a systematic approach to determine global representative environment 

conditions. Since the approach is application specific, runway capacity impact 

evaluation is addressed as an example.  

 

Evaluation of aircraft concepts in their operational environment, such as runway 

capacity analyses, and their impact created requires the traffic structure at an airport 

as one of the main environment inputs. This includes the daily airport traffic as well as 

traffic peaks that occur. The example of runway capacity impact was considered, since 

the runway system is one of the most constraining elements influencing airport 

capacity (Böck and Hornung, 2012). Böck (2013) focused on the evaluation of 

capacity impact of aircraft concepts based on selected real airport environments only. 

He  mentioned  the  need  of  further  addressing  the  diversity  in  traffic  situations  to  

ensure more generalized results. As explained above, selection of particular real 

airports is not the most favorable solution for assessments on a technological level 

since the specification of most suitable real airports is difficult and each real airport 

will incorporate peculiarities in the analysis process that influence the results. In order 

to evaluate aircraft concepts in a global perspective, a set of representative airport 

categories with distinct application-specific traffic characteristics could provide this 

desired input. 

 

Before deriving individual categorizations of airports, existing ones were elaborated. A 

variety of definitions for airport categorizations can already be found worldwide. A 

review of existing categorizations was presented in Öttl and Böck (2011), along with a 

judgment of applicability of these categorizations for air traffic-related simulations and 
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analyses. For these kinds of applications the quantified description of operational or 

traffic-related characteristics was found to be an important criterion. However, existing 

categorizations do not sufficiently describe traffic-related features, but rather contain 

qualitative descriptions or specifications related to passenger numbers only. This 

analysis already pointed out the need for application-specific airport categorizations 

based on similar traffic characteristics and not on passenger numbers or other 

qualitative features not related to the intended application.  

 

In a first approach to address similarities in air traffic at airports, Öttl et al. (2013) 

presented an evaluation of worldwide airport peak situations for use in runway 

capacity analyses. By application of a cluster analysis, similar groups of traffic peaks 

could be determined and a representative limited set of peak situations could be 

specified. This idea of deriving typical worldwide traffic situations is extended in this 

paper and addressed on an airport level rather than for peak traffic situations only. 

The work of Öttl et al. (2013) only covered an analysis of air traffic peaks at airports. 

These were characterized by their traffic mix. However, it was already mentioned that 

a capacity impact analysis requires daily traffic structures at airports in addition to the 

peaks. Hence, in the current paper the focus is on the derivation of representative 

airport categories based on parameters describing the daily traffic characteristics at 

airports. Additionally, the cluster analysis process is further improved compared to 

previous work and the data basis further extended. 

 

An overview of the process of deriving representative environment conditions (i.e. 

traffic-related representative airport categories in the application context) is shown in 

Figure 1.  

 

Figure 1: Overview of the Approach to derive Traffic-Related 

Representative Airport Categories 

 
 
Notes: Traffic characteristics at airports are parameterized and clustered. This reduces the 
multitude of airport traffic situations worldwide to a limited number of representative cases. 
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This systematic process identifies similarities in a multitude of traffic situations 

worldwide, which serve as the basic input. In order to pursue this, a cluster analysis is 

applied for which it is necessary to determine relevant parameters that describe the 

traffic environment. These parameters mainly depend on the intended application of 

the resulting airport categories. The cluster analysis results in a limited set of 

representative airport types, which enables a clear and comparable traffic-related 

analysis and can be considered as a standardized input.  

 

The specification of relevant parameters to describe the traffic environment is not 

straightforward. Hence, this traffic parameterization is explained in detail in section 2, 

while section 3 outlines the cluster analysis process applied to determine an optimal 

number of groups of similar airports and peaks. Section 4 provides the resulting 

airport clusters for airport capacity related evaluations.  

 

2. TRAFFIC PARAMETERIZATION  

The cluster analysis incorporated in the presented approach requires a clear 

quantification and parameterization of the environment conditions of relevance. 

Hence, before traffic-related similarities in airports can be identified for the application 

example, it is necessary to determine appropriate similarity parameters that are of 

importance in this context and at the same time are suitable to characterize the 

differences in traffic features among airports.  

 

The main sources of parameters to be taken into account are the technology 

evaluation methods for which the resulting representative environment conditions are 

intended to be applied. On the one hand, parameters can be directly incorporated as 

a similarity measure for clustering in case the data basis for them is available and 

there is a clear way to determine them (e.g. percentage of heavy aircraft movements 

in one day). On the other hand, there are cases where one specific parameter cannot 

be directly determined or where several parameters are required to specify a certain 

situation (e.g. parameters that characterize the movement distribution in one day). In 

these cases new parameters or metrics can be defined. In the following, similarity 

parameters of importance for runway capacity related technology evaluation are 

discussed. 
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2.1 Traffic Parameters for Capacity-related Application 

The methodology used for runway capacity impact evaluation is considered as given, 

being described in Böck and Hornung (2012). From this method the required input 

parameters characterizing the evaluation environment can be specified. General traffic 

parameter needs for runway capacity related technology evaluation were also 

mentioned in previous publications of this application context (see Öttl and Böck, 

2011; Öttl et al., 2013). As mentioned earlier, both traffic peaks and daily airport 

traffic are considered in this approach. A further important element of the evaluation 

environment for capacity analysis is the runway system, i.e. the infrastructure. 

However, in this paper only relative traffic-related characteristics are considered, not 

taking into account infrastructure features. This decoupled assessment was also 

proposed by Böck et al. (2011). Nevertheless, an analysis of relevant infrastructure 

layouts on a global level is important for capacity analysis, but is independent of the 

findings in this work. 

 

In Öttl et al. (2013) it was shown that peak traffic situations can show similarities 

across  different  types  or  sizes  of  airports,  when  considering  the  traffic  structure  in  

terms of the aircraft mix only. However, that analysis did not consider any information 

that describes the peak shape, which is also important to characterize a peak traffic 

situation. Moreover, peak situations can vary significantly during a one week period, 

depending on the type of airport. Therefore, it is advisable to take a whole week of 

scheduled traffic into account (see also section 2.2). To describe a peak situation, 

certainly the aircraft mix is incorporated as a main feature. Similar to the development 

in Öttl et al. (2013) 10 aircraft weight classes based on an analysis of maximum take-

off weight of currently operating aircraft types (see also Figure 11 in Appendix) were 

incorporated as the parameters to describe the peak mix. Since arriving and departing 

traffic can show significantly different shares in a peak situation, it is important to 

distinguish between these two. The final set of similarity parameters for traffic peak 

situations also contains peak shape-related parameters. In an analysis of a variety of 

potential parameters regarding their suitability as a similarity measure the following 

three have been selected: peak duration in hours, peak fill factor and peak amplitude 

as percentage of the maximum peak at the respective airport. The three parameters 

are shown in Figure 2. The fill factor specifies the area under the peak in relation to 

the area of a rectangle, given by the minimum and maximum peak deflection. The 

peak amplitude is determined relative to the maximum peak at the airport to allow for 

a dimensionless assessment of airports of different movement numbers. The 
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identification of a traffic peak in a daily movement distribution is performed by an 

automated algorithm, allowing for an analysis of a large amount of airports. The 

underlying steps are not explained further, since they would go beyond the scope of 

this paper. However, it should be mentioned that existing definitions of a typical peak 

situation (e.g. Standard Busy Rate in Ashford et al., 1991) do not play a significant 

role in this context. These are mainly based on passenger numbers or focusing on a 

period of an entire year rather than the daily traffic structure. To be able to 

incorporate a large amount of airports, peak detection is based on daily movement 

distributions determined from OAG flight data (OAG, 2008).  

 

Figure 2: Illustration of Parameters to describe a Traffic Peak Shape 

 

 
Notes: Triangles mark the start and end points of peaks, the red dot is a peak maximum and 
the cross marks the maximum peak at the airport. 
 

Apart from peak traffic situations there are additional traffic characteristics of 

importance for capacity-related technology evaluation. First, the total daily traffic mix 

at an airport should be considered for an analysis. Therefore, the 10 aircraft weight 

classes are considered again. As a major difference to peak situations, the daily traffic 

does not require a differentiation into arrivals and departures, since both should be 

close to equal during one day of operation.  The distribution of aircraft movements 

during one day should also be taken into consideration for a capacity-related airport 

categorization. From these distributions different characteristics can be identified, e.g. 

whether traffic peaks occur and how many of them. Moreover, periods of high traffic 

load can be determined. The parameterization of the daily movement distribution is 

an example for which no pre-defined clear parameters exist. Airport categorizations 

based on movement-related features have not been specified before. In an extensive 

study a multitude of parameters or metrics have been specified that characterize 
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certain features of this daily distribution. By analyzing the suitability as a similarity 

measure, e.g. by clustering of a single parameter, and expert judgment, the number 

of parameters could be reduced to the most relevant that are explained in the 

following. In order to allow for an analysis independent of the actual absolute size of 

an airport, parameters referring to the number of movements were specified relative 

to the maximum number of movements at the respective airport. 

 

The number of peaks (NP) states how often peak situations occur in the daily traffic 

characteristics. Besides determination of the number of peak situations in the total 

movement distribution, also the peaks in arrival and departure distributions are of 

interest for traffic-related investigations. The fill factor (FF) of the daily movement 

distribution is derived similar to the peak fill factor. It represents the area under the 

movement distribution graph in the time period from 7:00 to 23:00 (local time, LT), 

divided by the area of a rectangle given by the maximum movement number at that 

day at the respective airport (see hatched area share of rectangle in Figure 3, left). 

This fill factor allows an identification of airports with high total loads during the day 

and is a measure of how much of a fictitious movement limit  is  already used up. Of 

course, the significance of the fill factor would be highest when official capacity limits 

of airports were used. Unfortunately, these are not generally available for a large 

airport dataset. Hence, the maximum number of movements is a reasonable 

reference. Since for almost all airports traffic load issues arise primarily during the 

day, the fill factor was defined for a frequently used time period of day (7:00-19:00 

LT) and evening (19:00-23:00 LT) (EC, 2002). 

 

In contrast to the fill  factor the parameter relative load (RL) provides information on 

the amount of time where flight activities reach a high number of movements. These 

are usually allocated to peak situations. Therefore, the time period of flight activities 

at or above 80% of the maximum movement number, resembling a high load 

condition, are determined and set into relation to the time period for 20%, which was 

specified as a general operating condition of low traffic load (see Figure 3, right). A 

low value indicates that only certain peak situations reach high load values, while a 

value  close  to  100%  states  that  the  airport  constantly  operates  under  high  load  

conditions (compare also Figure 4). 
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Figure 3: Illustration of the Parameters Fill Factor (left) and  

Relative Load (right) 

 

  
Notes: The fill factor is the ratio between the hatched area under the movement graph and the 
rectangle specified by the maximum number of movements (indicated as 100%). The relative 
load relates the duration in which flights occur at and above 80% of max. movements to a 
lower limit of 20%. 
 

For determining the relative night rest (RNR) parameter the frequently used definition 

of the night time period (23:00-07:00 LT) is considered (EC, 2002). Analyzing this 

time period, the total duration in which the movement numbers are below 5 in 30min 

intervals is considered the night rest period, since movement numbers are significantly 

low (only few freighter or mail flights can occur). This duration is then set into relation 

to the total 8h night time period again. A value of 100% states that there are no 

significant movement numbers in the night period. 

 

In order to illustrate the ability of the parameters described to characterize significant 

features of movement distributions, Figure 4 shows three very distinct airport 

examples along with their parameter values for a single day. It can be observed that 

peak number and the relative load are able to describe the peak characteristics, while 

the fill factor provides a value for how much of the daily distribution is “filled” to a 

limit. While the parameters mentioned describe day time features, the relative night 

rest finally provides information about the night time period, the latter of which shows 

only minor differences in the examples presented. 
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Figure 4: Three Examples of Significantly Distinct Daily Movement 

Distributions along with their Parameter Values 

 
Notes: NP: number of peaks, FF: fill factor in %, RL: relative load in %, RNR: relative night rest 
in %. 
 

2.2 Specification of Data Samples 

The similarity parameters need to be determined for a large-enough dataset of 

airports for cluster analysis. This airport dataset shall contain a variety of airports 

worldwide that are of relevance for similarity assessment. Analyzing the ACI report 

2007, it could be determined that 90% of worldwide passenger traffic is 

accommodated at only 302 airports worldwide. In comparison, 473 airports account 

for 90% of worldwide aircraft movements. Hence, a reasonable airport dataset was 

specified by the intersection of the two specifications, resulting in 287 airports. This 

dataset contains a wide range of airports worldwide with highest movement and 

passenger numbers, relevant for technology evaluation.  

 

Particularly for the capacity-related assessment, the airport dataset had to be further 

reduced, since the 287 airports still contained a considerable amount of airports with 

very low movement numbers per hour, for which the peak detection algorithm 

resulted in errors. Comparing a visual error classification of peak detection with the 

maximum number of movements occurring at the respective airport, airports below a 

maximum of 16 movements per hour should be removed. Taking into account that 

lowest official numbers for slot facilitated airports in Germany are at 18 movements 

per hour, this limit was incorporated, resulting in a final airport dataset of 203 

airports. 

 

To determine the traffic parameters for the airports selected, OAG traffic data 

available for the year 2008 is used. Usually, the summer season shows higher 

movement  numbers  due  to  holiday  travel.  Hence,  this  season  was  considered,  as  

critical peak situations and movement distribution features are reflected more clearly 
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during summer season. Analyzing daily hourly movement distributions of airports 

during a whole week showed that there can be considerable variations, especially 

regarding the occurrence and characteristics of peak situations. Hence, seven 

consecutive days of scheduled movement data from OAG were taken into account. 

Airports with significant deviations during a week, e.g. Paris Orly or Las Palmas, can 

be considered as distinct airports in terms of varying movement characteristics. In 

order not to apply artificial weighting to airports that show weekly variations, each 

day  is  treated  as  a  separate  airport  for  the  whole  airport  dataset  (e.g.  MUC1  to  

MUC7). Analyzing OAG data, it could be determined that the months of June, July and 

September 2008 showed highest worldwide movement numbers of that year. Since in 

previous studies the busiest day of the year for Munich Airport in June 2008 was used, 

the week containing this day was taken into account for the final analysis.  

 

3. CLUSTER ANALYSIS 

A systematic approach to find similar groups of objects in a dataset by use of cluster 

analysis was already introduced for the traffic peak analysis in Öttl et al. (2013). In 

the current paper, the cluster analysis process is further improved and extended, for 

instance by incorporating several cluster algorithms. The stepwise process of cluster 

analysis applied in this paper is presented in Figure 5. It starts with the selection of 

similarity parameters and data objects. Generally speaking, the smaller the number of 

similarity parameters, the smaller the number of objects required to get reasonable 

cluster  results  (referred  to  as  “curse  of  dimensionality”  (Theodoridis,  2009).  A  

standardization of cluster data to a mean of zero and a variance of one is applied to 

avoid an artificial weighting of certain parameters due to their difference in 

magnitude. Moreover, this is essential for the subsequent optional step of Principal 

Component Analysis (PCA). PCA is a technique to transform data variables into a new 

set of variables – the principal components – which are linear combinations of the 

original variables and uncorrelated among themselves. The principal components are 

specified such that the data variance is maximized for the first component and the 

remaining variance is accounted for by the subsequent components. Hence, they are 

ordered by the magnitude of data variance they comprise. Considering only a subset 

of the principal components for further analysis can serve as a data reduction 

technique compared to taking into account all original variables, while still 

incorporating components of highest data variance. Due to the presented features, 

application of PCA before clustering can help to identify reasonable cluster solutions 

more clearly. For a detailed description of PCA refer to Sharma (1996). 
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Figure 5: Stepwise Cluster Analysis Approach (k denotes the Number of 

Clusters) 

 

 
 

Notes: The process includes data preprocessing, application of cluster algorithms and an 
assessment to identify the optimal cluster solution (cluster validity process based on Halkidi et 
al. 2001). 
 

In the pre-processing step, the input dataset is analyzed regarding the correlation 

between parameters and regarding outlier objects. In case a PCA is applied to the 

data, no correlations will occur. Outliers can distort the results and, thus, should be 

removed. Various methods for outlier detection exist in literature, of which the Local 

Outlier Factor (Breuning et al. 2000) was selected. 

 

The type of cluster algorithm used largely depends on the data to be clustered 

without a universally applicable best cluster algorithm. Hence, it is recommended to 

take into account several applicable algorithms and compare the results (Sharma 

1996). There is a large variety of cluster algorithms, some of which are applicable 

with certain restrictions only. An algorithm can, for instance, be intended for large 

datasets  only.  However,  specification  of  dataset  size  differs.  Since  the  number  of  

airports addressed in this paper constitutes a small to medium size dataset compared 

to the specifications in Han et al. (2012) and Abu Abbas (2008), algorithms 

specifically mentioned to be applicable to this type of data were considered. Han et al. 

(2012) stated that partitioning methods, such as k-means, are effective for these 

dataset sizes. Abu Abbas (2008) concluded that hierarchical algorithms and self- 

organized maps are recommended for small datasets. Moreover, it was important that 

the algorithms are easily implementable and show a low demand in computation time. 

Hence, k-means and k-medoid (PAM) – two partitioning methods – and agglomerative 

hierarchical clustering were finally selected. For a description of the algorithms refer to 

literature (e.g. Gan et al. 2007, Han et al. 2012 or Theodoridis et al. 2009).  
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The behaviour of many cluster algorithms depends on features of the dataset 

analyzed as well as initial conditions and parameters required for the method (Halkidi 

et al. 2001). Therefore, several cluster approaches are necessary, followed by a so-

called cluster validity assessment to identify a potential optimal cluster result. 

Moreover, many cluster algorithms require the number of clusters to be specified 

beforehand, which is usually not possible, since this number is also among the results. 

Thus, Halkidi et al. (2001) presented a process of cluster validity assessment 

incorporated in this paper and accounting for the remaining steps in Figure 5. It is 

proposed to repeat each algorithm for different cluster numbers k and different 

algorithm input parameters (mainly initial conditions). For each of the results, cluster 

validity indices can be calculated. Many indices have been defined and analyzed in 

literature (see also Halkidi et al. 2001 and Theodoridis et al. 2009). The indices taken 

into consideration for this approach are the Calinski-Harabasz (CH), Davies-Bouldin 

(DB), Dunn (DI) and I-Index (I), of which the first three are widely known. In a 

performance study by Maulik et al. (2002) the I-Index was described as the most 

reliable of the mentioned indices and hence has been included in the analysis process. 

Plotting the maximum (or minimum) of the respective index versus the number of 

clusters can help to identify an optimum. In case a clear global optimum cannot be 

identified, also local optima or “kinks” in the graphs can be an indication for an 

optimal cluster result. Of course, there is still a certain part of subjectivity in the 

interpretation of the quality of a clustering result and different indices can result in 

distinct potential optima. However, this approach offers a systematic way of 

addressing this issue. 

 

4. REPRESENTATIVE AIRPORT AND PEAK CATEGORIES FOR CAPACITY 

RELATED APPLICATION 

The cluster analysis approach presented above was applied to the example application 

of airport capacity related technology evaluation. Since all of the similarity parameters 

mentioned in section 2.1 (peak related, airport traffic mix and movement distribution 

related) are of interest for a capacity-related airport categorization, it would be 

optimal to take all of them into consideration at once. Unfortunately, the more 

parameters  are  taken  into  consideration  for  clustering,  the  harder  it  is  to  determine  

distinct groups of similar characteristics. Hence, it was decided to apply the presented 

cluster approach separately to an airport dataset and a peak dataset and combine the 

results afterwards. Peak-related parameters are specified with reference to a peak 

situation only and do not depend directly on parameters of the daily airport traffic at 
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the respective airport of occurrence. Therefore, this separation is reasonable. 

Nevertheless, peaks reflect some of the characteristics of the airport daily traffic and 

hence a later recombination is useful. 

 

The peak cluster assessment resulted in an optimal solution of 19 representative 

traffic peak situations. Resulting parameter values are shown in Figure 6. Labels for 

aircraft weight classes are provided for values  2% for clarity. Traffic mix shares for 

departures and arrivals (shaded in gray) are provided separately. Peaks are presented 

in  their  order  of  cluster  size,  being  the  number  of  original  peaks  that  formed  the  

clusters. It can be observed that the results contain significant arrival and departure 

peaks and that the most representative peaks do not contain heavy aircraft traffic. 

The fact that strong variations in the arrival/departure ratio result is positive, since it 

reflects the actual range of ratios occurring in reality. As a main difference to the 

assessment in Öttl et al. (2013), the optimal number of clusters is slightly changed. 

This is mainly due to the additional shape parameters added and the extended airport 

data basis. However, comparing the features of the clusters clear similarities can be 

observed. The additional shape parameters are provided in the table in Figure 6. The 

resulting peak duration is between 2.5 and 3.1 h for most of the peaks, with the 

major exception of peak type 7. This cluster contains airports reaching capacity limits 

during certain periods (e.g. Frankfurt).  It has to be mentioned that the peak duration 

is defined as the bottom peak duration and not as the duration at the top movement 

number of the peak. The fill factor can then provide additional information on the 

degree of pointedness of the traffic situation. A peak situation with high relative 

amplitude is preceded and/or followed by a situation of lower absolute movement 

numbers compared to peak situations with low relative amplitude. In general, peaks 

with lower relative amplitude offer fewer possibilities for recovering from delays or 

movement shifts after the peak situation and are thus most critical in terms of 

capacity considerations. 
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Figure 6: Resulting 19 Representative Traffic Peaks ordered by Cluster Size 

 

 
 
Notes: The peak traffic mix is provided by the bar graphs (for specification of aircraft weight 
classes see Figure 11 in Appendix), divided into arrivals (gray) and departures (white). The 
three additional shape-related parameters are listed below the bar graphs. 
 

Application of the cluster analysis process to the airport-related data resulted in a 

global optimum index value for the CH-index for each of the three algorithms applied 

(see Figure 7). Highest overall index values were reached for k-means, hence the 

index graph of this algorithm was further investigated. Apart from the global optimum 

at 10 clusters, several local optima could be identified. Comparing the deviation of 

cluster median results from the original airport dataset resulted in 16 clusters being 

the overall optimal solution. Analyzing original traffic parameter deviations of 

individual airports from cluster median values indicated that the median of the 

absolute deviations in percent lies below 10 for medium jet aircraft and below 1 for 

heavy type aircraft. 
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Figure 7: Highest CH-index Values for Three Different Cluster Algorithms 

Plotted over the Number of Clusters 
 

 
Notes: K-means shows highest values. Comparison and plausibility check of the global 
optimum (10 clusters) and local optima resulted in a final selection of 16 clusters. 
 

The resulting representative airport categories for daily traffic mix and movement 

distribution related parameters are shown in Figure 8. The airport categories are 

ordered by the cluster size, which is specified by the number of airports considering 

seven days of the week.  

 

It can be observed that airport categories of highest worldwide relevance are 

characterized by a high share of medium type aircraft. Category 1 contains primarily 

worldwide hub airports of different size, but also several origin and destination 

airports. Categories 2-5 contain a mix of different types of airports. Category 6 

contains mainly hub airports, particularly in the Americas and Asia-Pacific region. 

Airport category 7 contains large hub airports that are characterized by a high traffic 

load throughout the whole day, such as Frankfurt or Chicago O’Hare. This is also 

reflected by the cluster result for the fill factor, which is highest for this category. 

Moreover, this category includes the highest share of worldwide large hub airports. 

The  largest  amount  of  smaller  airports  at  touristic  destinations  as  well  as  several  

origin and destination airports is contained in category 8, showing the lowest fill factor 

and a low relative load. In terms of night rest, category 10 contains several airports 

that allow considerable traffic during night hours (such as Dubai airport), resulting in 

the relative night rest of only 41%. Among the set of 16 categories there are also less 

representative ones in terms of cluster size (see right of Figure 8). Category 16, for 

instance, only contains seven days of the week of Singapore airport. However, this 
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leads to a small share of JJ type aircraft in the traffic mix for this category. The largest 

share of light propeller aircraft has category 15, containing only a few different 

airports. Category 14 has the highest share of heavy aircraft traffic. It mainly contains 

four  airports  (for  seven  days  a  week)  -  ICN,  TPE,  HKG,  AUH  -  which  are  large  

intercontinental hubs. 

Figure 8: Resulting Representative Traffic-related Airport Categories 

Displayed in the Order of Cluster Size 
 

 
 
Notes: 16 clusters were determined as the optimal solution for the combined cluster analysis 
of the daily traffic mix and movement distribution parameters. The bar graphs present the 
resulting daily traffic mix (a list of percentages is shown in Table 2 in the Appendix; for 
specification of aircraft weight classes see Figure 11 in Appendix). Movement distribution 
parameters are given in the table below the bar graphs. 
 

The results for representative peaks and airports can now be combined. Therefore, 

first, the occurrence of a peak situation of an original airport in each of the 

representative peaks is counted for all airports analyzed. Then, peak occurrences are 

added for all airports in each representative airport category determined. Finally, the 

occurrence of representative peak types in each airport category can be provided in 

descending order of frequency. The highest three frequencies, hence, the most 
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relevant peak situations for each airport category, are provided in Table 1. 

 

Table 1: Most Relevant Peak Types in Representative Airport Categories 

 
Representative 
Airport 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1st relevant peak 1 2 1 1 1 9 1 2 6 1 9 11 10 12 17 18 
2nd relevant peak 4 5 2 6 2 10 2 5 8 13 3 14 11 13 16 19 
3rd relevant peak 7 7 3 8 4 3 7 1 7 3 10 6 13 15 9 14 
 

Notes: Only the three most relevant representative peak types (according to Figure 6) in 
representative airport categories of Figure 8 are shown, ordered by frequency of occurrence of 
peaks.  
 
This list gives an indication of reasonable airport-peak combinations. However, it 

should be kept in mind that in Table 1 only the three peak types with highest 

frequency of occurrence for each category are listed and that, depending on the 

overall number of airports in a category, relevance of other peaks can still be 

significant. Especially for more representative categories containing many airports 

further peaks should be considered. 

 

For a final demonstration of the quality of the representative categories of airports 

and peaks, a comparison is presented for one example airport (Brisbane BNE, day 5). 

Its daily movement distribution is shown in Figure 9 on the left, including two 

identified peaks. By comparing total absolute deviations of traffic mix percentages in 

the two peaks with all representative peaks of Figure 6, the closest peak type could 

be determined. A traffic  mix comparison for both peaks is shown in Figure 9 on the 

right. It can be observed that arrival/departure ratios for both peaks are close to the 

original values. Representative values for duration, fill factor and relative amplitude 

were used to indicate the shape of both closest representative peaks (see dashed 

peaks in Figure 9). It can be observed that peak amplitudes are well met, while the 

representative peaks underestimate the original peak duration. Analyzing the total 

movement distribution, BNE airport on day 5 resulted in airport category 6 during the 

cluster process. Taking into account Table 1, peak types 9, 10 and 3 are most relevant 

for this type of airport, of which type 10 appears in the BNE example. As shown in 

Figure 9 on the right, the total airport traffic mix for airport type 6 is close to the 

original data for BNE. Movement distribution shape-related parameters for BNE are 

given in Figure 9 on left. Values are of similar order of magnitude compared to the 

representative airport type. 
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Figure 9: Airport Example Brisbane (BNE) compared to Representative 

Airport Category and Closest Representative Peak Types  

 

Notes: The daily movement distribution and shape-related peak and airport features are 
shown on the left, the traffic mix structure is compared on the right. 
 

The resulting representative airport and peak clusters can now be directly fed into 

runway capacity impact analysis. Each peak and airport cluster resembles a certain 

environment condition for which the capacity impact is determined. As a result, a 

range of impact values is determined, covering most relevant traffic situations 

worldwide. Figure 10 provides an exemplary result for the capacity impact range of 

two distinct blended-wing-body (BWB) aircraft evaluated with the 16 representative 

airport environments (for more detailed information on this example analysis refer to 

Öttl, 2013).  The BWB aircraft substitute the aircraft weight classes HJ3+HJ4+JJ. 

Since not all airports contain these classes, only the ones where this aircraft type is 

present are shown. Capacity impact is described by the relative change in movements 

per hour possible at an airport when the aircraft type to be analyzed is present. The 

overall negative capacity impact of BWB type 2 can be observed compared to a rather 

positive impact of BWB type 1. This example demonstrates the importance of 

considering a variety of most relevant traffic conditions and not only a few local ones, 

as these environment conditions have a substantial influence on the results. 
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Figure 10: Exemplary Results for Capacity Impact Range of Two Blended-

Wing-Body (BWB) Aircraft, Determined for the 16 Representative Airports 

 

 
 

   

 
 
Notes: Based on Öttl (2013). Only representative airports as in Figure 8 are shown that 
contain this BWB aircraft type. The clear difference in impact can be observed. 
 

5. CONCLUSIONS AND OUTLOOK 

The main objective for this paper was to derive a systematic approach for 

specification of representative environment conditions of interest for technology 

impact evaluation on a global level. In particular, the airport traffic environment was 

considered, being of interest for runway capacity related evaluation studies. In 

general, impact evaluation is crucial for new technologies or concepts, as the planning 

and management of an efficient transport system requires detailed knowledge about 

the characteristics of this technology, including potential ranges of impact. The 

presented methodical approach based on cluster analysis ensures that the applicability 

of the respective technology is analyzed in a worldwide diversity of typical traffic 

situations.  

 

Due to the variety of parameters of interest for different types of evaluations, it is not 

possible to derive one overall airport categorization that contains all relevant features 

of airport traffic. It is necessary to carefully specify the major traffic-related 

parameters of importance for the evaluation method and then find similarities in 

worldwide traffic situations to determine a representative set of airport categories. For 

the exemplary field of runway capacity evaluations a set of similarity parameters that 

describe the daily movement distribution were defined and their suitability 

investigated. Fill factor, relative load and relative night rest were selected as suitable 

to differentiate between distinct traffic features. Application of a systematic cluster-

based assessment on traffic mix and movement distribution related parameters of 203 

airports, analyzed for seven consecutive days, resulted in a set of 16 representative 

airport categories. This limited set of representative airports can serve as a standard 
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input for capacity-related evaluations and ensure clarity and comparability on a 

technology level. By use of only a few representative types of airports, the worldwide 

diversity can be addressed and managed, without losing situations of importance. 

Additionally, 11936 traffic peak situations at airports were clustered according to their 

traffic structure and shape-related parameters, resulting in 19 representative 

categories. Each of the resulting representative airport categories could then be 

related to most relevant peak traffic situations. 

 

Apart from the capacity example presented, this systematic approach to derive 

representative airport categories can also be applied to other fields. A further example 

for which traffic-related categories are needed is noise-related technology evaluation. 

Similar to the approach for capacity-related applications, similarity parameters of 

importance can be derived from the evaluation methods used. Considering the noise 

simulation software INM as an application example, the basic specification 

requirements include traffic on a daily basis, divided into day, evening and night time 

period, depending on the noise metric of interest (FAA, 2007). The share of 

movements for day, evening, and night time (according to EC, 2002), as well as the 

traffic mix structure for each period could be considered as potential similarity 

parameters in this context. Applicability of the presented approach is not only limited 

to traffic-related parameters. Similarities between any kind of entities or structures in 

air transport, such as airlines or air traffic control, can also be considered.  

 

Taking only the current state of worldwide traffic into consideration to evaluate new 

technologies is a first step but not sufficient. Since new technologies are mainly 

introduced in future situations, a method has to be defined on how plausible future 

traffic situations can be determined.  One possibility is to make use of scenario 

techniques to specify plausible future developments of environment conditions. The 

example presented in Öttl (2013) incorporates this type of approach. 
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APPENDIX 
 

Figure 11: Aircraft Weight Classes for Traffic Mix Parameterization 

 
 

 
 

Notes: Derived from Öttl et al. (2013). 
 
 

Table 2: Data Table for Traffic Mix Distributions of Representative Airport 

Categories in Figure 8 
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LP  1 1 0 1 1 0 0 0 1 3 0 0 0 0 28 0 
MP 7 10 6 11 7 9 6 4 44 15 4 12 4 2 22 0 
MJ1 8 40 21 18 19 10 22 24 10 7 13 6 0 0 6 0 
MJ2 74 44 66 62 64 52 56 60 41 47 43 43 39 24 22 39 
MJ3 6 4 5 4 5 9 7 8 0 6 29 5 2 7 13 1 
HJ1 1 1 1 2 2 12 2 2 1 5 4 7 24 6 8 4 
HJ2 1 0 1 1 1 4 2 1 1 4 3 8 2 24 0 7 
HJ3 1 0 0 1 1 2 2 1 1 5 2 16 17 15 1 31 
HJ4 1 0 0 0 0 2 3 0 1 8 2 3 12 22 0 17 
JJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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